HEAT AND TOOL WEAR

• FACT:

- Heat accelerates chemical reactions?

• FACT:

- Hot corrosion is frequently the leading cause of tool wear?

• FACT:

 Hot corrosion is a chemical reaction between Cobalt and the Material being machined?

• RESULT:

- Less heat slows hot corrosion which reduces tool wear.

ADDITIONAL METHODS OF HEAT REDUCTION

• AVOID DEAD STOPS:

- SE Tools contact a part 300 times/sec?
 DE Tools contact a part 600 times/sec?
- 3E Tools contact a part 900 times/sec?

• PLUNGING:

- Get in and start making chips?
- COOLANT:

- Water

AirRamped Plunging into the workpiece

- Higher Plunge Speeds

CNC FEED & SPEEDS FORMULAS

Chip Load = (Inches) Feed Rate (IPM) RPM x No. Of Flutes

Spindle Speed= Feed RateFeed (IPM) =RPM x Number Of Flutes x Chip Load(RPM)Number Of Flutes x Chip Load

FOR TIME STUDIES AND TRUE AVERAGE CHIP LOADS USE THE FOLLOWING:

ACTUAL FEED RATE (IPM) =

INCHES ROUTED ÷ CUTTING TIME X 60

BIT DIAMETER ADJUSTMENTS:

1/4" CED = CHART FEED x .65/8" CED = CHART FEED x 1.23/8" CED = CHART FEED x .83/4" CED = CHART FEED x 1.4

DEPTH OF CUT ADJUSTMENTS BASED ON CUTTING EDGE DIAMETER

3/8" AND BELOW SIZES:

Normal Depth Of Cut = $2 \times Cutting Edge Diameter$ Feed Rate = .75 x Value Found In Bit Diameter Adjustments

Always remember make chips not dust!

REDUCING HEAT

FACT:	AS CHIP SIZE INCREASES, THE VOLUME)/(SURFACE AREA)
	RATIO INCREASES.
FACT:	THE LARGER THAT RATIO, THE
	MORE HEAT A CHIP CAN STORE
FACT:	AS CHIPS ARE EJECTED, THEY
	CARRY AND RETAINED HEAT
	WITH THEM.
RESULT	S: LARGER CHIPS CARRY MORE
HEAT	FROM THE CUT AND
DO NOT ALLOW IT TO	
BE TRANSFERRED TO THE CUTTER.	

TYPICAL FEED RATES IN WOOD

• 1/4" CED - 1/4" DEPTH OF CUT: - Wood Routs: 150ipm to 300ipm - Finishers: 150ipm to 250ipm

• 1/2" CED - 1/2" DEPTH OF CUT:

- Wood Routs: 200ipm to 400ipm
- Chipbreaker/Finishers: 350ipm to 1200ipm
- Roughers/Hoggers: 500ipm to 1500ipm
 Compression Spirals: 400ipm to 1500ipm
- Finishers: 200ipm to 600ipm

ALL FEED RATES BASED ON 18,000RPM SPINDLE SPEED

TYPICAL FEED RATES IN PLASTICS

• 1/4" CED - 1/4" DEPTH OF CUT:

- Acrylics 125ipm to 250ipm
- Polypropylene: 150ipm to 300ipm
- Polyethylene or HDPE: 150ipm to 300ipm
 Polycarbonate: 100ipm to 200ipm
- 1/2" CED 1/2" DEPTH OF CUT:
 - Acrylics 150ipm to 300ipm
 - Polypropylene: 150ipm to 400ipm
 - Polyethylene or HDPE: 200ipm to 500ipm
 Polycarbonate: 100ipm to 250ipm

ALL FEED RATES BASED ON 18,000RPM SPINDLE SPEED

TYPICAL FEED RATES IN ALUMINUM

• 1/8" CED - .060" DEPTH OF CUT (Single Sheet):

- SC Spiral "O" Flutes: 150ipm to 300ipm
 SC Standard Spirals: 60ipm to 125ipm
- SC Standard Spirals: 60ipm to 125ipm
 HSS Standard Spirals: 45ipm to 90ipm
- 1/4" CED .25" DEPTH OF CUT (Stacked Sheet or Plate):
 - SC Spiral "O" Flutes: 125ipm to 250ipm
 - SC Standard Spirals: 90ipm to 175ipm
 HSS Standard Spirals: 75ipm to 150ipm
 - Stacked sheet will typically feed faster than plate

ALL FEED RATES BASED ON 18,000RPM SPINDLE SPEED AND MIST COOLANT CONDITIONS

1/2" AND ABOVE SIZES:

Normal Depth Of Cut = $3 \times Cutting$ Edge Diameter Feed Rate = Full Chart Values Feed Single Flutes Slightly Faster x 1.1